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ABSTRACT 

The weighting factors used in conventional objective analysis methods are reviewed on the basis of numerical 
variational analysis. Special emphasis is placed on anisotropy (ellipticity) of the factors. The weighting factors Of 
the objective analysis methods were empirically determined and are two dimensional in a horizontal plane (2, y). 
Most of these weighting factors are isotropic. However, anisotropic weighting factors have recently been used to  
give greater weight to the upstream and downstream observations as compared to those of the crosswind direction. 

A simple advection equation is used as a dynamical constraint in the numerical variational analysis in order to 
take into account quantitatively the effect of wind direction and speed on the anisotropy. A simple low-pass filter is 
also included in the variational formalism. A Green’s function, derived for the Eular equation, is used to  discuss 
the theoretical basis of the isotropic and anisotropic weighting factors. 

The results obtained from the numerical variational analysis scheme suggest that  the weights for the upstream 
and downstream observations should be of the same magnitude and as much as three times larger than the respective 
weights for the crosswind direction. These results were obtained by taking time t as a constant and considering a 
reasonable range of wind speeds. These suggestions seem to  support the empirical anisotropic weighting factors pro- 
posed by Endlich and Mancuso. Additional discussion concerns weighting along the time coordinate simultaneouslY 
with the two space coordinates. 

Endlich and Mancuso (1968) suggested a modification 
of the Cressman objective analysis scheme (Cressman 
1959) in which greater weight would be applied to both 
upwind and downwind observations as compared to 
those of crosswind direction. Inman (1970) recently 
developed this scheme into a form for operational use. 
The modification seems to improve the accuracy and 
details of analyzed patterns near such features as the 
low-level jet axes. These features are obviously important 
for local weather analysis and forecasting, but are espec- 
ially vital for severe-storm forecasting. 

The theoretical foundation for anisotropic weighting 
is of interest. Determination of these weights on a dynami- 
cal basis should have not only theoretical interest but 
should also have value for further development of objec- 
tive analysis techniques. A variational analysis method 
(Sasaki 1970a, 1970b) is used in this study as a basis for 
developing a theoretical foundation of anisotropically 
weighted smoothing. Furthermore, this study extends 
the analysis of spatial weighting to include a proper 
weight for the time coordinate relative to those of the 
space coordinates. The discussion is illustrated by taking 
an advection equation as a dynamical constraint of the 
numerical variational analysis. 

MEROCAB VARIABUQNAL ANALYSIS 
WITH A SlMPLE ADVECTION EQUATION 

The variational equation in a continuous system, 
using advection as a “weak constraint” (Sasaki 1970a, 

where J is the functional, 2,  a’, a:, and ai are the pre- 
specified weights (may be functions of t’, x’, and y‘ but 
assumed as constants in this study) ; ‘p’ is a function of t‘, 
x’, and y’; - 7  7~ and are the first derivatives with 

respect to t’, x‘, and y’, respectively. The 2’ and y’ com- 
ponents of wind velocity, c’, and iv respectively, are 
assumed to  be prespecified constants (can also be func- 
tions of t’, d ,  and y’). Discussion centers on the con- 
tinous system in this study, but an extension to a discrete 
system can be made (Sasaki 1970b). 

The first term of the right-hand side of eq (1) is the 
“observational constraint” (minimizing the variance be- 
tween the observation and analyzed field), the second 
term is the “weak dynamical constraint”, namely, 

a a  a 
at‘ a x  aY 

The word weak is used because the advection equation is 
assumed to be approximately rather than rigorously 
satisfied. If rigorous satisfaction of the advection equation 
is required, then other variational formalisms should be 
used (Sasaki 1970~) .  The approximation form is more 
compatible with the empirical determination of aniso- 
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tropic weights in the objective analyses. The third term 
of eq (1) is a low-pass filter of frequency. The fourth and 
fifth terms are low-pass filters of wave numbers. The 
second term of eq (1) also behaves as a filter for suppressing 
the magnitude of disturbances that move with transla- 
tion velocities different from those specified by ci, and c,'. 
The greater the difference is, the more the magnitude is 
suppressed (Sasaki 1970b). The purpose of including the 
third, fourth, and fifth terms of eq (1) is not only to remove 
undesirable high-frequency and high-wave number com- 
ponents but also to eliminate any possible discontinuity 
of the analyzed field. If only the first and second terms of 
eq (1) are used, discontinuity of solution may appear in 
the direction normal to a streamline defined by the velocity 
components c: and ci (Sasaki 1970a). An aim of conven- 
tional objective analyses is to obtain smooth analyzed 
patterns and such a discontinuity is not desirable. There- 
fore, the low-pass filters expressed by the third, fourth, 
and fifth terms of eq (1) are included. 

Equation (1) is nondimensionalized by defining the 
charateristic scales @ for 'p', r for t', L for x' and y', L / T  
for c: and c,', l/slj2 for Z', for a', and L2/a2 for a: as 
follows: 

V'=@Q, 

t'=rt, 

x'=Lx, 

Y' =LY 1 

I L  

l L  c, =- c 

c, =- c,, 
7 

7 y1 

and (3) 

where cp, t, x ,  y, c,, cy, Z, a, and as are nondimensional 
variables. If one uses eq (3), eq (1) can be written in a 
nondimensional form as 

This is a second-order partial differential equation of the 
elliptic type if at and a8 are not zero (Sasaki 1970b). 

For simplicity, we assume that c,=O and c,#O. This 
assumption does not detract from the generality of the 
discussion as it can be achieved by a proper coordinate 
transformation. Under this assumption eq (5)  is written 
as 

3. STANDARD FORM OF EQUATION (6) 

A set of new orthogonal coordinates is chosen in order to 
transform eq (6) into a standard form of elliptic type of 
differential equation. Since the only derivatives in eq (6) 
with respect to x are a2 /dx2 ,  the coordinate transformation, 
(2,  y, t)+(X, Y ,  TI), is performed on the y-t plane; and, 
therefore, the x-coordinate is unchanged as shown in 
figure 1; 

x= 2, 

Y= y cos 6- t sin 6, 

and 
Ti=y sin e+ t COS 6. 

Using this transformation, eq (6) becomes 

+2(-sin e+c, cos @(cos 6+c, sin 8)  - aYaT, a2 1 

or 

(7) 

a, -+[a(-sin a20 6+c, cos 13)~+a, sin2 6+a, cos2 61 - a20 

+[a(cos 6+c, sin 6)2+a, cos2 6+a, sin2 61 - a2, 
ax2 a p  

az 
+[&(-sin 6+c, cos e)(cOs 6+c, sin e)-(a,-as) 

3% X sin 6 cos 6]-=&~-;) aYaT, 

The Euler-Lagrange equation (also called the Euler where e is the angle between the y and Y coordinates or 
t and TI coordinates. equation) is derived from eq (4). This equation is 

For simplicity, we assume 

a,=as(=a,) (9) 
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Derivation of the Green's function used in this paper and 
based on Schwartz' theory of the distribution is given in 
the appendix. 

The Green's function is anisotropic if the translation 
velocity cv does not vanish. Since the empirical weighting 
of the conventional objective analysis techniques is 
concerned with the 2-y plane, it is interesting to investi- 
gate an (z,y) cross section of Q where t=T=constant. 
The cross sectional pattern is denoted by (Jz,v and given 
from eq (17) as 

\ 

FIGURE 1.-Transformation of coordinates (z,y,t) to  (X,Y,Ti) on 
the y-t plane, eq (6). 

1 e-4rz . .  
Q;,v==4?, ~ (19) 

rz,,=i(z-[)2+[cos2 e+&f sin2 8 1  (y-?>z)1/2. (20) 

e is positive for clockwise rotation around the z-axis and Tz, v 

represents the angle between the time coordinate and the 
characteristic line defined from dv/dt+c, &/dy=O. 

By these assumptions, eq (8) or (8') is simplified to  
the form 

where rz ,v  is written from eq (18) as 

(12) 

Equation (11) is standardized when we adopt an 

Since elongation is observed in the y-coordinate, the 
definition of the eccentricity is taken as eq (21). The 
eccentricity ez,v lies between 0 and 1. As approaches 1, 
the ellipse becomes more elongated along the y-coordinate. 

Three numerical examples showing a u e n c e s  of 6, are 

U=CY(COS e+cv sin e). 

expanded coordinate T that is defined as 

*=(L>1R a,, (13) a + q  given below: 

The final standard form becomes (i) c,=O.l, 

where and the eccentricity ez,v is ez,,=0.O7; 

(ii) cv=l.(P, 

The weighting factors of the conventional objective 
analyses are comparable to  the Green's function. The solu- , 
tion of eq (6) is written as follows: 

and Ez,y=0.541; and 

(z) c,=lQ.Q, 
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From these values of T,,,, it is apparent that, as c, decreases, 
the pattern of GZ,, approaches a circle (axially sym- 
metric with respect to the t-axis). As c, increases, the 
G,,, pattern becomes elliptic, elongating equally in the 
upstream and downstream directions of the translation 
velocity. Also it is easily proven, although the discussion 
is omitted in this article, that as af decreases, the G,,, 
becomes more elliptic. A similar behavior for G is observed 
on the t-y cross section also. 

5. ISOTROPIC WEIGHTING FACTORS AND 
GREEN'S FUNCTION 

In  most objective analysis methods, weighted smoothing 
is essential. The value of a meteorological parameter a t  a 
point (grid point) is determined from the weighted mean 
of the data at  surrounding stations. The weighting factors 
are determined on empirical (or statistical) bases. The 
various methods differ essentially only in the choice of 
the weighting factors. Most weighting factor magnitudes 
decrease monotonically as the distance between the grid 
point and a station increases. Two types of weighting 
factors arise under this general system. 

The weighting factor of the first type, W,, is expressed 
by 

1 
W 1 = m  

where n is an integer and R, is the normalized and non- 
dimensional distance between the grid point and a station. 
The weights used by Bergthdrsson and DOOs (1955), 
Bushby and Huckle (1957), Barnes (1964), and Endlich 
and Mancuso (1968) are in this type. Linear combinations 
of W, obtained by choosing proper values of n or repeated 
application of a weighting factor s assists in increasing 
the accuracy of analysis. The weighting factor mono- 
tonically approaches zero as R, increases toward infinity. 

The weighting factors for the second type, W2, mono- 
tonically decrease toward zero as the nondimensionalized 
and normalized distance Rz approaches 1, namely, 

and 
wz=o R221. 

This type includes the methods by Cressman (1959)' 
Stephens (1967), and Inman (1970). 

To compare these two types of weighing factors with 
the Green's function derived in the appendix, we choose 
one from each type. These factors were chosen to be in 
anisotropic forms so that they can be used again in the 
next section, which concerns anisotropic weighting factors. 
Endlich and Mancuso's and Cressman's weighting factors 
are chosen for the first and second types, respectively. 

The first one may be written as 

1 1 
w1= 1+ (;)"=iFft: -1 

where c is a constant length dimension of 3 deg. lat. for 
the surface-map analysis and 6 deg. lat. for upper air 
analysis, and T; is the dimensional distance in deg. lat. 
between a grid point and a station. Endlich and Mancuso 
include a wind velocity term that gives more weight to  
the data in both the upstream and downstream direction 
as compared to the crosswind direction, but for simplicity 
the term is neglected in this section. 

Cressman's weight, which was extended by Inman 
(1970) to include the anisotropic term, wind velocity, 
may be written as 

w,=o r:>R' 

where R' is the dimensional radius of influence and rk is 
the dimensional distance between a grid point and a 
station. 

Using the empirical weighting factors, (27) and (28), 
the analyzed value ~ p ~ , ~ ( x , y )  using our notation is given by 

where Wl,z represents W1 or W,, G ( ( , I , T ~ )  is the observed 
value a t  a specified time, rO=tO (constant) at  the point 
& ( E , ~ , T ~ ) ,  N is the total number of data stations, 2 is the 
sum taken over all stations, and 'p1,2 (s,y) is the analyzed 
value at  P(x,y,to) obtained by use of two different weight- 
ing factors as denoted by the subscripts 1 and 2. 

Equation (29), which uses the empirical weighting 
factors, is similar to the one derived from the use of the 
Green's function eq (16). Since the following relationship 
is valid, 

eq (16) can be rewritten 

Comparing e.q (31) with eq (29), ~ G ( z , y , t ; t , q , ~ )  is 
. .  
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6. ANISOTROPIC WEIGHTING FACTORS 
Endlich and Mancuso (1968) gave greater weight to 

the data in the upstream and downstream directions than 

I I I I I 

- 

sional radius of influence. R* includes a wind velocity 
term defined as 

~ * = ~ ( i + p   COS^ e). (36) 

3 

for the crosswind direction data. Their weighting factor, 
the isotropic version of which was discussed in section 5,  
may be written as 

is the radius of influence in the crosswind direction, 
e is the angle between the position vector locating an 
observation from a grid point, and the wind velocity 

\ 
\ '.- 

1 vector a t  the grid point, & is a. nondimensional ratio i f  
the wind speed relative to a maximum wind speed as 
given by 

@=- bV. 

W -  (33) 

where R, is the nondimensional position vector, V is the 

*- 1+ ((&I + 1 %  xV(>' 

(37) nondimensional and normalized wind vector (wind vm' 
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and (24), respectively. A choice of L=100 km and r=3  hr 
or L= 1000 km and r=30 hr is reasonable for characteristic 
length and time scales. For both combinations, the 
characteristic scale of wind speed is 10 m/s. Hence, c,= 1 
and 10 represents 10 m/s and 100 m/s, respectively. The 
rate of increase of the effective radius suggested from 
Green’s function, i.e., 1.19 times for c,=lO m/s and 
3.17 for 100 m/s, seems to be in good agreement with 
the rate of 2.0 (regardless of the magnitude of c,) used 
by Endlich and Mancuso (1968) and Inman (1970). 
It is also clear from the above analysis that isotropic 
weighting is generally sufEcient when the wind speed is 
less than about 10 mis. 

1.5 

I .a 

t 
3? 

0.5 

0 

R 2  - 
FIQURE 4.-Anisotropy of Wz. 

I I I I 

, 

7. PROPOSED DETERMINATION 
OF A TIME WEIGHTING FACTOR 

Increasing importance has been placed on development 
of automated schemes for analyzing time series data a t  
various observation stations. The empirical weighting 
factors, especially those proposed in the past and used in 
operational analyses, are designed for smoothing observa- 
tions on a horizontal plane (z-y plane). It seems useful to 
investigate some guidelines for extending the presently 
existing weighting factors to include time series observa- 
vations. Green’s function derived in this study is a weight- 
ing function not only of the horizontal coordinates 2 and y 
but also the time coordinate t ,  and seems to provide 
guidance for the desired extension. 

(i) Gz,,; an z-t Cross Section of Green’s Function 

First, we investigate an z-t cross section of Green’s 
function. From eq (17) and (18), G on an 2-t cross section 
is written 

,*(E { (x -€ l2+  ( Y - . 1 ) 2 } 1 ’ 2 )  - 
where 

FIQURE 5.-Anisotropy of WQ as a function of the nondimensional 
wind speed. 

b is a constant, usually unity. Figure 4 shows the weight- 
ing factor W 2  in the crosswind direction ( p = O )  and in 
the upstream and downstream directions (p=l).  The 
eccentricity of Wz is even higher than that of W1. 

Finally, the anisotropic nature of G or WG can be com- 
pared with those of W1 and W2. The anisotropy of G and 
Gz,y for this case, is given in eq (22), (23), and (24). The 
anisotropy of WG should be the same as G. Figure 5 
shows WG in the upstream or downstream direction 
as functions of the nondimensional wind speed c,. As 
seen from eq (20), the effective radius is increased in 
the upstream or downstream direction a t  the rate of 
{cos2 e+ [a,/(a+ a,)] sin28)-1’2 times the isotropic radius. 
For example, the rate is 1.005 when c,=0.1; 1.19 when 
c,=l.O; and 3.17 when c,=lO.O as shown in eq (22), (23), 

This result represents the isolines of G as being elliptic 
and having the time coordinate t as the major axis and 
z as the minor axis since sin2e+[a,/(a+a,)]cos2e is always 
less than 1, 0.5, 0.70, and 0.995, respectively, for c,=O, 1, 
and 10 when a=at=as=a,=l. The focal points are all 
on the time coordinate and located at  hl ,  f0.65, and 
hO.10, respectively, for cy=O, 1, and 10. Figure 6 illus- 
trates the above results. 

It should be especially noted that the ellipticity or 
elongation along the t-axis in the case where c,=O results 
simply because the numerical values of a, at, as, and af 
are all chosen to be unity. I n  other words, the conditions 
c,=O and a=at=as=aj give 
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‘ t  

FIGURE 6.-Anisotropy of 6 ,  II for various nondimensiond wind 
speeds. 

This choice of a l s  implies & times more smoothing in 
frequency (in time coordinate) than in wave number (in 
space coordinate when e,=O). For equal smoothing in 
both the time and the space coordinates, proper and 
unequal choices of CY’S are necessary. For instance, the 
choice at=0 and aS=a gives an isotropic pattern of Q 
in the x-t or y-t cross sections when c,=0. 

(ii) Gff,t;  a y-t cross section of Green’s function 

The pattern of B on a y-t cross section is expressed by 
taking x=E=const., as 

where 

This case is also similar to (i), since Q v , ,  shows elliptic 
profiles on the y-t cross section. However, both major 
and minor axes rotate clockwise by the angle 0. After 
the rotation. the coordinates that coincide with the major 

- -I0 -0.5 1- .-oy 
-1.0 

Y ( cy = I )  

FIGURE 7.-Anisotropy of B ,  , for various nondimen- 
siond wind speeds. 

sections. The IF coordinate (note that this is a character- 
istic line also) is enlarged by a factor of (a+a,)/a, which 
is always larger than 1. These characteristics of Bv,t  for 
the three cases of eu=O, 1, and 10 are shown in figure 7. 
The isolines of G‘u,t are all for 62u,t=0.36. This figure 
shows that as the wind speed increases, more weighting 
is necessary in the y-direction (in the upstream and 
downstream directions in space) and less weighting (the 
minimum is 1) is required in the time Coordinate. Both 
figures 6 and 7 seem to encourage extension of the existing 
empirical weighting factors to include the time coordinate. 

As discussed previously, the ellipticity of isolines of 
Q x , ,  in figure 6 is merely due to  the particular choice of 
CY, at,  and a,. The effect of wind speed does not appear 
in Qx, in the cross section which is. perpendicular to wind 
direction in the z-t plane. Wowever, the effect of wind 
speed is apparent and significant as seen in figure 7 along 
the y-axis, which is taken as the wind direction in the 
y-t plane. Accordingly, it is suggested from this study that 
the possible weighting factors with respect to  the time 
coordinate may be chosen in the same manner as the 
weighting factors in the crosswind direction. 

The theory of distributions originally developed by 
Schwartz (1948, 1950, 1951) is also called the theory of 
ideal functions (Courant and Hilbert 1962). This theory 
provides a foundation for ideal functions such as Dirac’s 
function and clarifies in its application the theore tical 
basis of Green’s function. We apply the theory and asso- 
ciated mathematical techniques to derive Green’s func- 

rend minor axes are denoted by X ,  Y ,  and Tin the previous tion for eq (14). 
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t 6(T-T’). If one uses eq (19)) the right-hand side of eq 
(44), except for the sign, becomes 

S(X-X’)S(Y - Y ’ ) s ( T - T ’ )  

etlkx(x-X’) +b. (Y--Y’)  + W T -  T’) ldk&ydk,. 

(47) 
=& I, I, I, 

’ ’) Let us assume a similar expression for Go where 

GdX, Y,  T; X‘, Y’, T’) =& I , g ( k x j  ky,  k ~ )  
x ei( kx(X--X’) f k v  (Y-Y‘) +kT(T- ‘2’’) ldkXdky&,. (48) 

This Fourier integral expression is general and valid if 
the number of discontinuities of Go is finite. 

Substitution of eq (47) and (48) into eq (44) leads to 
the relationships, 

(49) 
1 

g ( k X ,  k y ?  k T )  =k$+k$ +k; + 

and FIGURE S.-Coordinate transformations of the ( k ~ , k y , k ~ )  and 
( X - X ‘ ,  Y-Y’, T-T’) spaces to   CY,@) and @,@,A) spaces, 
respectively. 

Equation (14) is rewritten 

where L is the operator expressed by ( ) in eq (43). Let 
us first consider the elementary solution Go of the equation 

L[Go]= -8(X-X’)6( Y- Y’)S( 2’-2”) (44) 

where the (X-XI) ,  ( Y - Y ’ ) ,  and (T-2”’) are three 
components of the distance vector between two points 
P(X,Y ,T)  and &(X’,Y’,T‘), 6 is the Dirac’s &function, 
namely S(X-X’) satisfies the following conditions 

(i) S(X-X’)=O X f X ’  
(ii) S(X-X’)=m X=X‘ (45) 

and similarly for 6(Y-Y’) and 6(T-T’). Schwartz 
called Go the “solution Blbmentaire” (elementary solution) 
which is a solution of eq (44) but it will be obtained 
without considering prespecified boundary conditions. The 
elementary solution is similar to the fundamental solu- 
tion, but differs as the nonhomogeneous part of eq (43) 
is replaced by the &function. 

The Fourier integral expression of the &function is 

Additional coordinate transformations of eq (50) are 
made in the (kx, kr ,  kT) and (X-X‘,  Y-Y’, T-T’) spaces 
(fig. 8)) namely to (k ,  a, p) and (r, 8, A) where 

kx=k sin a cos 0, 
k y= k sin a sin p, (51) 

kT=k COS a, 
and 

X-X’=-r sin e cos A, 
Y-Y’=-r sin e sin k, (52) 
T-T’=-r cos 6. 

The quantities w and x are defined as indicated in figure 
8. Using the above newly defined independent variables, 
the following relationships are derived: 

k x ( X - X ’ )  + k y ( Y - Y ‘ )  + kT(T-T‘) 
=-krfcos e cos afsin e sin a cos (X-p))=-kr cos w 

(53) 

sin adcudp=sin wdwdx. (54) 
and 

Using these new independent variables, Go becomes 

m et[kx(X-X’)+kv(Y- Y’)+k~(!l’-T’)l 
Go=& J.mJ:mJ- k%+ k$ + kC+K dkxdkydk, 

e-ikr eo8 w 

k2 sin wdw 

sin wdw. (55) 

S(X-X‘)=LJ e$kx(x-xr)dk, -w<X, X ’ < W .  (46) =-!- dk s‘ -7r dx k2+K 
m 

21r -m 

Similar expressions can be obtained for 6(Y-Y’) and 
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i 
C (entire pass) 

1 -i+ 

FIGURE 9.-The contour integral J of eq (62) 

Since the following integration 

(56) 
sin kr sin wdw=2 - sn’ e - i k r  kr 

is valid, Go is simplified as follows: 

(57) 

and this is written, for convenience of the subsequent con- 
tour integral, as 

Now consider the integral 

The relationship between Go and I is given as 

(59) 

where Im ( I )  is the imaginary part of 1. In  order to per- 
form the integration expressed by eq (59), we assume k . -  

is a complex number defined by 

k=k,+ikj 

and we consider the following contour 
plane, 

(61 1 
integral on the k-  

Since ~ 1 0  and the interval is finite in the upper half 
domain (ki>O), the integral pass C is taken as shown in 
figure 9. This pass is a sum of the integral on r (which is 
the upper half circle having the ends A and B) ,  and the 
integral on the pass between A and B which makes it 
equal to eq (59). We exclude the singularity point k=i& 
by taking pass C. The integral around the singularity 

gives the residue. Since the integral J should vanish along 
the entire pass C and the integral along r also vanishes 
as T-MW, we obtain 

I=-t-%ri Res ($6)). (63) 

Now the residue (Res) is 

where 

r=.J(X-XX’)2+(Y-Y’)2+ (T-T’)2. (67) 

The elementary solution of eq (44) is given by eq (66). 
The next step is to satisfy the boundary condition by 
linear addition of Gl and Gz to Go 

~=Qo+GG1+~2G2 (68) 

where C, and C2 are constant and QL and Q2 are solutions 
of the homogeneous part of eq (44) 

L[G,]=O Z=1,2. (W 
The boundary condition is chosen for the physical reason 
that the influence should vanish as the distance r 
approaches infinity, as follows: 

G 4 0  r 3 m .  (70) 

Since Go satisfies this boundary condition, 4 and 4 are 
zero. Green’s function of eq (43), 6, which is now equal to 
Go, is given by eq (66). 

Finally, we transform the coordinates ( X ,  Y, 2’) back to 
(2, y, t )  through eq (7) and eq (13), and rewrite the 
Green’s function in the following form, 

and e and a are given by eq (10) and eq (12). 
Green’s function, eq (71), satisfies the required condition 

l i i  L , g d S = - l  (73) 
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where dS is an element of a surface, I’,, encircling the 
point P(z ,  y, t )  with an Snitesimal  radius T .  The proof 
of eq (73) is given as follows. From eq (71), the left-hand 
side of eq (73) becomes 
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